Climate Change & Weather Prediction using Time Series

Haja Amir Rahman (p2100803) School of Computing Singapore Polytechnic, Singapore amirrahman517804@gmail.com

Abstract—The study is focused on the prediction of different geographical components of weather such as Temperature, WindGustSpeed, WindSpeed, Humidity, Pressure. Recent shifts in the Australian climate including both higher temperatures and lower winter rainfall, have had significant effects on the agriculture sector. Despite these recent trends, there remains uncertainty over the future climate and its potential impacts on Australian farm businesses. Australia's climate has been experiencing continued warming, an increase in extreme fire weather and length of the fire season, declining rainfall in the southeast and southwest of the continent, and rising sea levels.

I. INTRODUCTION

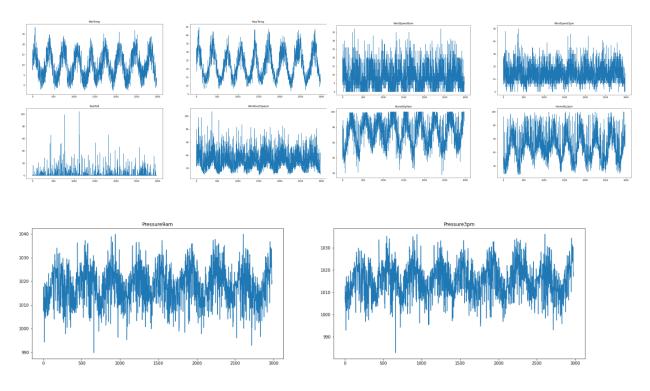
The Bureau of Meteorology is Australia's national weather, climate and water agency. Its expertise and services assist Australians in dealing with the harsh realities of their natural environment, including drought, floods, fires, storms, tsunami and tropical cyclones. Through regular forecasts, warnings, monitoring and advice spanning the Australian region and Antarctic territory, the Bureau provides one of the most fundamental and widely used services of government.

The Bureau contributes to national social, economic, cultural and environmental goals by providing observational, meteorological, hydrological and oceanographic services and by undertaking research into science and environment related issues in support of its operations and services.

BOM weather stations are assigned a weather station ID. Observation data is collected per weather (observation) station.

II. METHODOLOGY

A. DATA COLLECTION

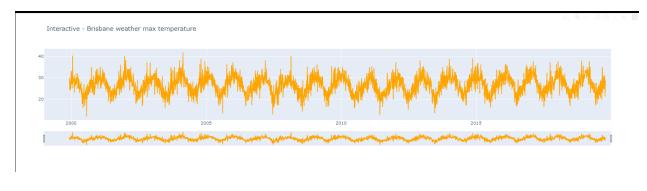

The 2 datasets used for this study were obtained from Kaggle. One is observation data and one is a normal dataset. The first observation dataset contains a date range of 1999-2018 while the second one contains a date range of 2007 to 2008. The dataset contains 2979 records of Weather data. Some EDA was done with the observation data as the date range is longer but the actual Time Series Algorithms were applied to the second dataset as it has more geographical features to analyze and make conclusions with.

The following figure shows the columns and their definitions for the second dataset:

Data Dicti	ionary
he training datase	t consist of 2979 observations from March 2008 to January 2017 with daily records for the various attributes.
Columns	Descriptions
Date	(DD/MM/YYYY)
Location	The common name of the location of the weather station
MinTemp	The minimum temperature in degrees celsius
MaxTemp	The maximum temperature in degrees celsius
Rainfall	The amount of rainfall recorded for the day in mm
Evaporation	The so-called Class A pan evaporation (mm) in the 24 hours to 9am
Sunshine	The number of hours of bright sunshine in the day.
WindGustDir	The direction of the strongest wind gust in the 24 hours to midnight
WindGustSpeed	The speed (km/h) of the strongest wind gust in the 24 hours to midnight
WindDir9am	Direction of the wind at 9am
WindDir3pm	Direction of the wind at 3pm
WindSpeed9am	Wind speed (km/hr) averaged over 10 minutes prior to 9am
WindSpeed3pm	Wind speed (km/hr) averaged over 10 minutes prior to 3pm
Humidity9am	Humidity (percent) at 9am
Humidity3pm	Humidity (percent) at 3pm
Pressure9am	Atmospheric pressure (hpa) reduced to mean sea level at 9am
Pressure3pm	Atmospheric pressure (hpa) reduced to mean sea level at 3pm
Cloud9am	Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. It records how many
Cloud3pm	Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. See Cload9am for a description of the values
Temp9am	Temperature (degrees C) at 9am
Temp3pm	Temperature (degrees C) at 3pm
RainToday	Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds 1mm, otherwise 0
Risk_MM	The amount of next day rain in mm. Used to create response variable RainTomorrow. A kind of measure of the "risk".
RainTomorrow	The target variable. Did it rain tomorrow?

Figure1

III. EXPLORATORY DATA ANALYSIS (EDA)



The above visualizations show us the overall trend of the different geographical factors: MinTemp, MaxTemp, Rainfall, WindGustSpeed, WindSpeed9am, WindSpeed3pm, Humidity9am, Humidity3pm, Pressure9am, Pressure3pm respectively. Since these are factors of weather and climate change, it is seasonal thus the smooth trend for most of the factors. However we can see that Rainfall does not have a seasonal or smooth trend.

1.00 0.75 0.50 0.25 0.00 -0.25 -0.50

For the observation dataset, I have created an autocorrelation plot using pandas.plotting.

We can see that there is a correlation around every 12 months (which makes sense due to seasons). Let's have a look at the data in an interactive way - you can try it out in the jupyter notebook.

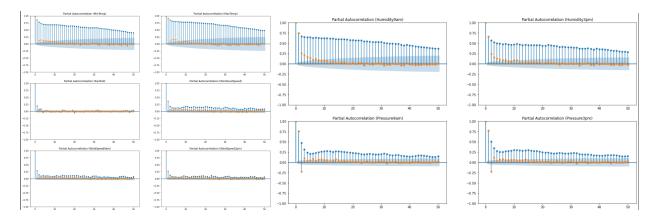
IV. DATA PREPROCESSING

For the second dataset which is the main dataset, I did some data preprocessing to drop some trivial geographical factors such as Cloud measurement in the morning and at noon.

	MinTemp	MaxTemp	Rainfall	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am	Pressure3pm
Date										
2008-12-01	13.4	22.9	0.6	44.0		24.0	71.0	22.0	1007.7	1007.1
2008-12-02	7.4	25.1		44.0	4.0	22.0	44.0	25.0		1007.8
2008-12-03	12.9	25.7		46.0	19.0	26.0	38.0	30.0	1007.6	1008.7
2008-12-04	9.2	28.0		24.0	11.0		45.0	16.0	1017.6	1012.8
2008-12-05	17.5	32.3	1.0	41.0	7.0	20.0	82.0	33.0	1010.8	1006.0
2017-06-21	1.2	15.2	0.4	15.0		2.0	100.0	62.0	1029.4	1026.7
2017-06-22	0.8	13.4		17.0	6.0			66.0	1029.4	1025.9
2017-06-23		11.9		44.0	9.0	2.0	100.0	81.0	1022.3	1017.7
2017-06-24		14.1	0.2	28.0	4.0	15.0		49.0	1018.8	1017.2
2017-06-25	3.9	10.9	0.0	28.0	6.0	0.0	88.0	82.0	1020.5	1018.8

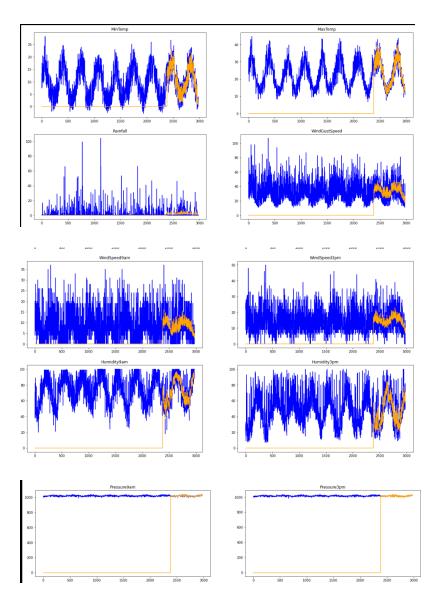
Remaining are these 10 columns which will be passed through the baseline ARIMA model to see how our

prediction, RMSE and AIC scores are.


Before passing the finalized dataset through the baseline model, since this is time series and though this is seasonal data, I conducted the Dicky Fuller Test for Stationary Series. Turns out all the features are indeed stationary so there is no differencing required.

Di	ckey Ful	ller Test	for St	tationarity Series
To m	odel a time-ser	ies using ARM	IA model, w	we need to ensure the time-series is stationary, that is the the mean, variance and covariance does not vary with time.
To ve	erify stationarity	, we will be ut	ilising Augn	mented Dickey Test at Significant Value, $p=0.05$ with,
				$H_0: \mathrm{Time} ext{-Series} ext{ is Non-Stationary} \ H_1: \mathrm{Time} ext{-Series} ext{ is Stationary}$
	p_values.ap	<pre>iata[colname] ppend((colname me(p_values, collage)</pre>	olumns=["Co	<pre>coldata.values)[1])) # Run Adfulion test to determine is the time-series Stationary Unname", "P value"])</pre>
	Colname	P value	stationary	
0	MinTemp	2.024920e-03		
1				
2		0.000000e+00		
3				
4	WindSpeed9am		True	
5			True	
6		9.463469e-03	True	
7		3.116801e-03 1.276637e-08		
8	Pressure9am Pressure3pm	1.270037e-08	True	
9		1.2103546-08		

Figure 3


Next we have the PACF plots for the selected features so that we can decide an appropriate order for the prediction

model.

Figure 4

Based on this we have arrived at the orders of "orders = [(1,1,1),(2,0,3),(2,0,5),(5,1,3),(6,1,6),(6,2,6),(6,1,7)]". These orders do not correspond to the different features but are just there to test out first.

V. MODELING (ARIMA & SARIMAX)

Above we have the baseline prediction results using an ARIMA model for the respective features. As we can see, the predictions are quite consistent with the actual data for all the features and there are no alarming anomalies.

VI. HYPERPARAMETER TUNING

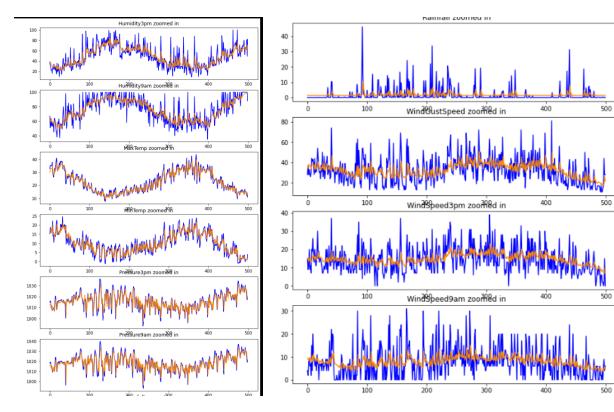
Now we move onto hyperparameter tuning. In addition to the interpreted the parameters based on ACF and PACF plot, I have also performed with hyperparameters tuning by using a customized GridSearch function in a for-loop as

the time-series cross validation to find out the best set of hyperparameters for SARIMAX model by minimizing the Root Mean Squared Error (RMSE) and Akaike Information Criterion (AIC).

ARIMA Model Possible Hyperparameters:

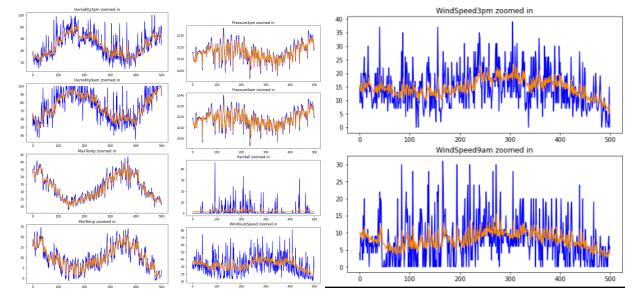
	colname	order	rmse	aic	mape
60	MinTemp	(6, 1, 7)	2.914995	14832.359311	2.390319e+13
40	MinTemp	(6, 1, 6)	2.925516	14838.656970	2.423602e+13
10	MinTemp	(2, 0, 3)	2.933233	14849.236309	2.772110e+13
50	MinTemp	(6, 2, 6)	2.933983	14861.438737	2.263666e+13
30	MinTemp	(5, 1, 3)	2.938434	14854.670397	2.822358e+13
27	Humidity3pm	(2, 0, 5)	13.262674	24070.554665	2.369367e-01
57	Humidity3pm	(6, 2, 6)	13.268175	24092.567514	2.257825e-01
7	Humidity3pm	(1, 1, 1)	13.276105	24066.163240	2.318897e-01
37	Humidity3pm	(5, 1, 3)	13.278925	24071.416438	2.331931e-01
47	Humidity3pm	(6, 1, 6)	13.294638	24074.457846	2.329331e-01
70 ro	ws × 5 columns				

SARIMAX Model Possible Hyperparameters:

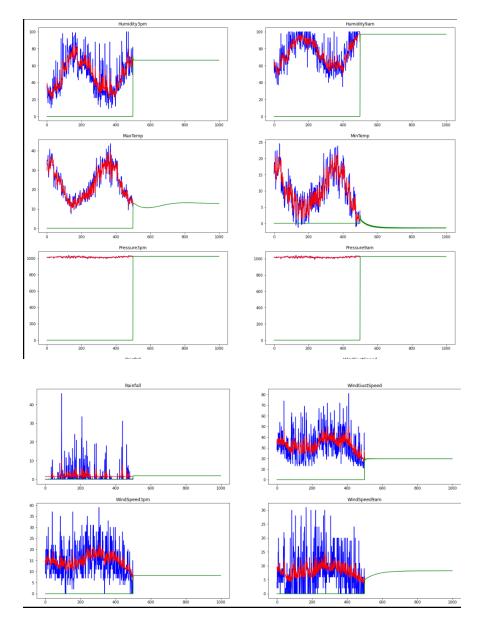

	colname	order	best rmse	aic
0	Humidity3pm	(6, 1, 7)	13.258351	24080.301818
1	Humidity9am	(6, 1, 7)	10.099721	22409.379768
2	MaxTemp	(2, 0, 5)	2.951463	14998.142011
3	MinTemp	(6, 1, 7)	2.914995	14832.359311
4	Pressure3pm	(6, 1, 7)	4.456807	17159.269155
5	Pressure9am	(6, 1, 7)	4.917523	17536.740046
6	Rainfall	(5, 1, 3)	4.737037	19198.764235
7	WindGustSpeed	(6, 1, 6)	11.575267	23353.516119
8	WindSpeed3pm	(6, 2, 6)	6.595212	19966.531335
9	WindSpeed9am	(2, 0, 3)	6.339236	19486.606038

ARIMA Best Hyperparamters:

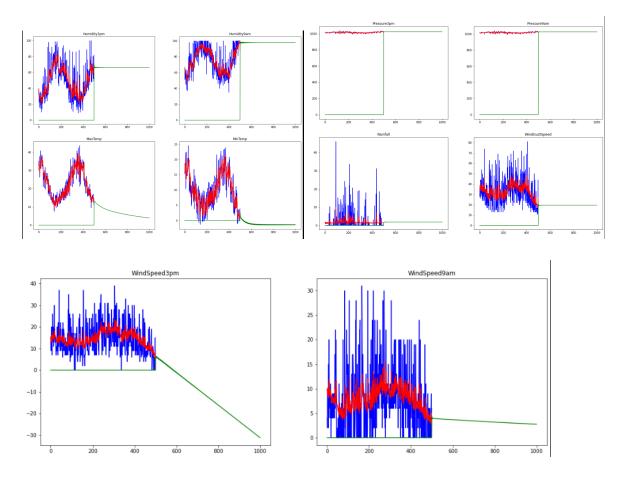
<pre>best = results.loc[results.groupby("colname")["aic"].idxmin() best </pre>						
	colname	order	rmse	aic	таре	
7	Humidity3pm	(1, 1, 1)	13.276105	24066.163240	2.318897e-01	
6	Humidity9am	(1, 1, 1)	10.115780	22402.700507	1.043831e-01	
21	MaxTemp	(2, 0, 5)	2.949086	14993.863507	1.065957e-01	
60	MinTemp	(6, 1, 7)	2.914995	14832.359311	2.390319e+13	
39	Pressure3pm	(5, 1, 3)	4.474582	17154.278667	3.242843e-03	
38	Pressure9am	(5, 1, 3)	4.939168	17536.135761	3.541815e-03	
12	Rainfall	(2, 0, 3)	4.781712	19195.166232	4.739169e+15	
33	WindGustSpeed	(5, 1, 3)	11.590366	23345.916269	3.164025e-01	
5	WindSpeed3pm	(1, 1, 1)	6.617315	19935.777093	7.060598e+14	
14	WindSpeed9am	(2, 0, 3)	6.329491	19470.765927	5.596466e+15	


SARIMAX Best Hyperparameters:

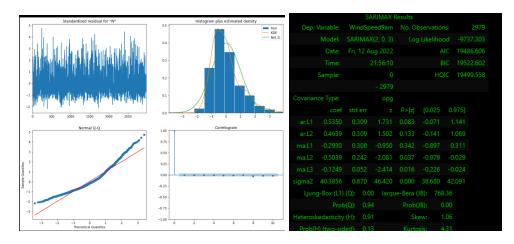
	colname	order	rmse	aic
67	Humidity3pm	(6, 1, 7)	13.258351	24080.301818
66	Humidity9am	(6, 1, 7)	10.099721	22409.379768
21	MaxTemp	(2, 0, 5)	2.951463	14998.142011
60	MinTemp	(6, 1, 7)	2.914995	14832.359311
69	Pressure3pm	(6, 1, 7)	4.456807	17159.269155
68	Pressure9am	(6, 1, 7)	4.917523	17536.740046
32	Rainfall	(5, 1, 3)	4.737037	19198.764235
43	WindGustSpeed	(6, 1, 6)	11.575267	23353.516119
55	WindSpeed3pm	(6, 2, 6)	6.595212	19966.531335
14	WindSpeed9am	(2, 0, 3)	6.339236	19486.606038


ARIMA Prediction Results based on Hyperparameters:

SARIMAX Prediction with Best Hyperparameters:



ARIMA Forecast:


I plotted the visualizations such that the forecast overlaps with the actual and predicted trends so that comparison is easier. We can see that Minimum, Maximum Temp, Pressure at 9am and Pressure at 3pm have a pretty consistent forecast. The rest do not have much consistent forecasts and after some research I found out that it is because of normal daily fluctuations. These factors are small but important factors that affect the weather daily and in the long term.

SARIMAX Forecast:

I did the same plotting for SARIMAX as I did for ARIMA so that comparison is easier. We can see that the forecasts for the different features affecting the weather are significantly more accurate and consistent than with ARIMA thus allowing me to choose the SARIMAX model as my final model.

SARIMAX Error Analysis and summarized results:

VIII. CONCLUSION

In summary, I have presented a model that is able to forecast key Climate-Change and Weather statistics of new daily measurements of the different geographical factors of weather using multivariate SARIMAX model with RMSE of 2.951463 for Max Temperature, 10.099721 for Humidity at 9am,4. 917523 for Pressure at 9am, 4.737037 for Rainfall, 11.575267 for WindGustSpeed and 6.339236 for WindSpeed at 9am evaluated using a hold-out test set. However, there are still some gaps in my modeling as the data obtained only establish an upward trend. I am uncertain of the model performance when the climate situation in Australia subsides and the key factors fluctuate. Besides, a lower granularity modeling could be taken by modeling the Climate statistics for different cities in Australia such that the authorities could adopt a more targeted approach and channel the resources or implement a more advanced equipment to monitor the weather to maintain their results based on their policies. **On 27 July 2022**, **the Government introduced the Climate Change Bill 2022**. The Bill proposes to set Australia's greenhouse gas emissions reduction targets into law. It is similar to climate target laws enacted in other OECD nations and in four of Australia's states and territories.

Finally, I wish to publish the findings and deploy the model as an interactive web application as a reminder to urge all countries to abide the policies that they have decided to execute.

IX. REFERENCES

Csiro.au. 2022. State of the Climate - CSIRO. [online] Available at:

<<u>https://www.csiro.au/en/research/environmental-impacts/climate-change/state-of-the-climate</u>> [Accessed 12 August 2022].

Anon, Simulating the effects of climate change on the profitability of Australian Farms. *Simulating the effects of climate change on the profitability of Australian farms - DAFF*. Available at:

https://www.agriculture.gov.au/abares/research-topics/working-papers/simulating-the-effects-of-climate-change

[Accessed August 12, 2022].

corporateName=Commonwealth Parliament; address=Parliament House, C., 2022. Climate change bill 2022. Home

- Parliament of Australia. Available at:

https://www.aph.gov.au/About_Parliament/Parliamentary_departments/Parliamentary_Library/FlagPost/2022/July/C limate_Change_Bill_2022 [Accessed August 12, 2022].